Articles Archive

№ 3/300, 2020

Problems of HTR Reservoirs Production Monitoring Using Well Test Methods

Authors: Andrey I. IPATOV graduated from Gubkin Russian State University of Oil and Gas in 1982. He is Doctor of Technical Sciences, Professor of the Department of Geophysical Information Systems of Gubkin Russian State University of Oil and Gas (National Research University), specialist in the field of geophysical and hydrodynamic control of development of oil and gas fields. He is author of more than 200 scientific publications, 8 monographies, 30 patents of inventions. E-mail:
Dmitry M. LAZUTKIN graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. He is specialist in well testing and production logging. He is author of more than 20 scientific publications, 3 patents of invention. E-mail:

Abstract: Due to the growing share of deposits formed by reservoirs with abnormally low permeability in the assets of oil and gas companies, the geophysical support of the production of such deposits is an urgent task. Conducting and interpreting hydrodynamic studies in reservoirs with abnormally low permeability is a complex task, which requires both, adjusting the methodology for conducting and interpreting studies, and the correct approach to aggregation.
This article examines the problems encountered in well test surveys on hard-to-recover (HTR) reserves, substantiates the prerequisites for the occurrence of key uncertainties, and provides recommendations for well test methods in reservoirs with abnormally low permeability.

Index UDK: 550.8.014

Keywords: well test, pressure, flow rate, hard-to-recover reserves, low-perme-able reservoirs, pressure gauge, log-log graph, interpretation

1. Kremeneckij M.I., Ipatov A.I. Stacionarnyj gidrodinamiko-geofizicheskij monitoring razrabotki mestorozhdenij nefti i gaza [Stationary monitoring of oil and gas field development by production logging and well testing]. M.-Izhevsk: IKI, 2018, 796 p. (in Russian).
2. Guljaev D.N., Lazutkin D.M., Morozovskij N.I. Kontrol’ razrabotki nizkopronicaemyh terrigennyh kollektorov po dannym gidrodinamicheskih issledovanij skvazhin [Low-permeable terrigenous reservoirs production monitoring based on well test methods] Trudy ХII Vserossijskoj nauchno-tehnicheskoj konferencii “Aktual’nye problemy razvitija neftegazovogo kompleksa Rossii” [Proc. of the ХII Russian science-technical conference “Russian oil and gas industry actual problems”] Moscow, 12-14 february 2018, p. 82-91 (in Russian).
3. Bilinchuk A.V., Ipatov A.I., Sitnikov A.V., Yakovlev A.A., Shurunov A.V., Galeev R.R., Kolesnikov M.V. PLT control of production of low-permeable formations in wells with complex completion. The experience of the company “Gazprom Neft”. Neftjanoe hozjajstvo [Oil Industry], 2018, no. 12, p. 34-37 (in Russian).
4. Lazutkin D.M., Ipatov A.I., Kremeneckij M.I. Features of studying reservoirs with abnormally low permeability based on the results of well test. Sb. trudov mezhd. konf. “Trudnoizvlekaemye zapa- sy — nastojashhee i budushhee” [Proc. Int. Symp. “Hard-to-recover reserves — presence and future”]. Saint-Petersburg, 2019, p. 20-21 (in Russian).
5. Vol’pin S.G., Lomakina O.V., Afanaskin I.V. Features of the geological structure and energy state of the Bazhenov formation deposits. Materialy mezhdunarodnoj nauchno-tehnicheskoj konferencii “Geopetrol 2014, Razvedka i razrabotka kollektorov nefti i gaza — novye tehnologii, novye vyzovy” [Proc. Int. Symp. “Geopetrol 2014, Exploration and production of oil and natural gas reservoirs — new technologies, new challenges”]. Krakow, 2014, p. 85-95.

Geological Activity of Shale Diapir in Bao Vang Field, Block 111-113, Centre of Song Hong Basin

Authors: Nguyen Tien THINH graduated from Hanoi University of Mining and Geology (Vietnam) in 2004, earned Master’s Degree in Geoscience of Chulalongkorn University in 2010, and became Candidate of Geological and Mineralogical Sciences, Department of General and Petroleum Field Geology of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of geophysics and geology of oil and gas fields. E-mail:

Abstract: Diapirs are very common in the center of the Shonghong Basin in the north of the continental shelf of the Socialist Republic of Vietnam. They are formed as a result of the release of high pressure in the Oligocene, Miocene layers. Exploration results show that gas discoveries in the Bao Wang field and adjacent fields are closely related to shale diapirs. This article is devoted to the results of diapirs interpretation, their activity based on the latest 2D, 3D seismic data from the Bao Wang field, blocks 111-113. The article also discusses and evaluates the origin, formation mechanism and role of diapir activity in relation to oil and gas accumulations

Index UDK: 550.8

Keywords: clay diapir, Shonghong basin, high pressure, Bao Wang, pliocene

1. Gavrilov V.P., Leonova E.A., Rybalchenko V.V. Gryazevoj vulkanizm i neftegazonosnost Songhongskogo progiba (Severnyj shel’f Vetnama) [Mud volcanism and petroleum potential of the Song Hong trough (North Vietnam shelf)]. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2011, no. 265, p. 29–37 (in Russian).
2. Bonini M. Mud Volcanoes: Indicators of Stress Orientation and Tectonic Controls. Earth-Science Reviews, 2012, vol. 115 (3), p. 121–152.
3. Chapman R.E. Diapirs, Diapirism and Growth Structures. Petroleum Geology, 1983, vol. 16, p. 325–348.
4. Dimitrov L.I. Mud volcanoes — the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 2002, vol. 59 (1), p. 49–76.
5. Di P., Huang H., Huang B., He J., Chen D. Seabed pockmark formation associated with mud diapir development and fluid activities in the Yinggehai Basin of the South China Sea. Journal of tropical oceanography, 2012, vol. 31 (5), p. 26–36.
6. He L., Xiong L., Wang J. Heat flow and thermal modeling of the Yinggehai Basin, South China Sea. Tectonophysics, 2002, p. 245–253.
7. Huang B.J., Xiao X.M., Dong W.L. Multiphase natural gas migration and accumulation and its relationship to diapir structures in the DF1-1 gas field, South China Sea. Marine and Petroleum Geo-logy, 2002, vol. 19 (7), p. 861–872.
8. Lei C., Jianye R., Peter D.C., Wang Z., Li X., Tong C. The structure and formation of diapirs in the Yinggehai-Red River Basin, South China Sea. Marine and Petroleum Geology, 2011, vol. 28 (5), p. 980–991.
9. Mazzini A. Mud Volcanism: Processes and Implications. Marine and Petroleum Geology, 2009, vol. 26 (9), p. 1677–1680.
10. Mazzini A., Nermoen A., Krotkiewski M., Podladchikov Y., Planke S., Svensen H. Strike-Slip Faulting as a Trigger Mechanism for Overpressure Release through Piercement Structures, Implications for the Lusi Mud Volcano, Indonesia. Marine and Petroleum Geology, 2009, vol. 26 (9), p. 1751–1765.
11. Morley C.K., Guerin G. Comparison of Gravity-Driven Deformation Styles and Behavior Associated with Mobile Shales and Salt. Tectonics, 1996, vol. 15 (6), p. 1154–1170.
12. Morley C.K. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 2002, vol. 347 (4), p.189—215.
13. Rensbergen P.V., Morley C.K., Ang D.W., Hoan T.Q., Lam N.T. Structural Evolution of Shale Diapirs from Reactive Rise to Mud Volcanism: 3D Seismic Data from the Baram Delta, Offshore Brunei Darussalam. Journal of the Geological Society, 1999, vol.156 (3), p. 633–650.
14. Report on regional geology and potential hydrocarbon in Song Hong basin. Vietnam Petro-leum Institute, 2011, 143 p.
15. Report on study of formation and accumulation of hydrocarbon in the late Miocene and early Pliocene period, centre Song Hong Basin. Vietnam Petroleum Institute, 2015, 152 p.
16. Stewart S.A., Davies R.J. Structure and Emplacement of Mud Volcano Systems in the South Caspian Basin. AAPG Bulletin, 2006, Vol. 90 (5), pp. 771–786.
17. Tapponier P. et al. On the mechanics of the collision between India and Asia. Collision tectonics, 1986, p. 115–157.
18. Vendeville B.C., Jackson M.P.A., 1992. The rise of diapirs during thin-skinned extension. Marine and Petroleum Geology, 1986, vol. 9 (4), p.331—354.
19. Wang X.C., Li Z.X., Li X.H., Li J., Liu Y., Long W.G., Zhou J.B., Wang F. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume close to Subduction Zones?. Journal of Petrology, 2012, vol. 53 (1), p. 177–233.
20. Xie X., Li S., Dong W., Zhang Q. Overpressure development and hydrofracturing in the Yinggehai basin, South China Sea. Journal of Petroleum Geology, 1999, vol. 22 (4), p. 437–454.
21. Yuan Y., Zhu W., Mi L., Zhang G., Hu S., He L. Uniform Geothermal Gradient and Heat Flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea. Marine and Petroleum Geology, 2009, vol. 26 (7), p. 1152–1162.

Justification of Productive Interval Penetration Path for Horizontal Drilling

Authors: Елена Михайловна КОТЛЯРОВА окончила МИНГ имени И.М. Губкина в 1988 г. Кандидат технических наук, доцент кафедры разработки и эксплуатации газовых и газоконденсатных месторождений, заведующая отделением Разработки нефтяных, газовых и газоконденсатных месторождений филиала РГУ нефти и газа (НИУ) имени И.М. Губкина в г. Ташкенте. Член-корреспондент РАН, специалист в области разработки и эксплуатации газовых и газоконденсатных месторождений и ПХГ. Автор более 50 научных публикаций. E-mail:
Загид Самедович АЛИЕВ окончил Азербайджанский индустриальный институт имени М. Азизбекова в 1957 г. Профессор кафедры разработки и эксплуатации газовых и газоконденсатных месторождений РГУ нефти и газа (НИУ) имени И.М. Губкина. Крупнейший специалист в области подсчета запасов, исследования скважин и проектирования разработки месторождений нефти и газа с использованием вертикальных и горизонтальных скважин. Доктор технических наук, профессор, академик РАЕН, академик Международной академии наук природы и общества. Автор 365 публикаций, в том числе 35 монографий и 30 тематических брошюр. E-mail:
Нурлан Шахларович АЛИЕВ студент юридического факультета РГУ нефти и газа (НИУ) имени И.М. Губкина.

Abstract: This paper discusses practical examples of justifying the horizontal wellbore path of a gas-bearing formation. Various possible paths have been proposed, taking into account the geological characteristics of the field and numerous factors affecting the productivity of horizontal wells, with respect for synchronous decrease in reservoir pressure in the productive layers

Index UDK: 622.244.5

Keywords: drilling path, horizontal wellbore, reservoir pressure, multi-object field, interlayer, ascending profile, gas-hydrodynamic connection

1. Aliev Z.S., Arutyunova K.A. Opredelenie neobhodimoi dlini horizontalnoi gazovoi skvajini v prosesse razrabotki. М. Gazovaya promishlennost, 2005, no. 12, p. 45-47.
2. Алиев З.С. и др. Teoreticheskie i tekhnologicheskie osnovy primeneniya gorizontal’nyh skvazhin dlya osvoeniya gazovyh i gazokondensatnyh mestorozhdenij. M.: Nedra, 2014, 450 p.
3. Aliyev Z.S., Sheremet V.V. Opredelenie proizvoditel’nosti gorizontal’nyh skvazhin, vskryvshih gazovye i gazoneftyanye plasty. M.: Nedra, 1995, 131 p.

Analysis of influence of properties of real and ideal gases on thermal conductivity of oil and gas-liquid mixture

Authors: Konstantin H. SHOTIDI graduated from Gubkin Russian State University of Oil and Gas in 1966. He is Candidate of Technical Sciences. Deputy Head of the Department of Thermodynamics and Heat Engines, Professor. He is author of more than 100 scientific, educational and methodical works and patents on thermal methods of impact on oil reservoir, research of thermal properties of rocks, applied issues of thermodynamics and heat transfer. E-mail:
Sergey V. KRASEN’KOV graduated from Bauman Moscow Technical University in 2014. He is leading thermal engineer of OOO OKB GAMMA. He is post-graduate student of the Department of Thermodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). E-mail:

Abstract: One of the problems that throughout the history of commercial oil production significantly has been complicating wells operating conditions is paraffin deposits. There are a number of factors contributing to the formation of paraffin deposits, with changes in well temperature and pressure conditions being most significant, in particular, a decrease in the temperature of the fluid during production. Today, fluid temperature distribution along the depth is rarely measured in wells. Therefore, for most wells, it is necessary to build thermograms using the corresponding calculated dependencies. To implement the required calculation algorithm, a basic set of initial data is required. Due to the fact that the fluid is a mixture of oil, water and gas, many of the necessary parameters must be calculated specifically for the mixture, for example, density, heat capacity, thermal conductivity. The first two are calculated according to the mass additivity rule, whereas for thermal conductivity there are several calculation methods applicable to a particular case.
The article presents a methodology for calculating the coefficient of maximum thermal conductivity of a fluid. A comparative analysis of the effect of the properties of real and ideal gases on the calculated coefficient of maximum thermal conductivity of the fluid is also carried out.

Index UDK: 622.276

Keywords: coefficient of thermal conductivity of the fluid, paraffin’s, complications in work of wells, methods of dealing with complications, downhole heating cable, electric heating systems, temperature field, heat transfer in well

1. Termodinamika i teploperedacha v tehnologicheskih processah neftjanoj i gazovoj promyshlennosti [Thermodynamics and hеаt transfer in technological processes of oil and gas industry]. A.F. Kalinin, S.M. Kuptsov, A.S. Lopatin, K.H. Shotidi: Uchebnik dlja vuzov. Moscow, 2016, 264 p.
2. Kuptsov S. M. Teplofizicheskie svojstva plastovyh zhidkostej i gornyh porod neftjanyh mestorozhdenij [Thermo physical properties of a reservoir fluid and rocks of petroleum deposits]. Moscow, 2008, 205 p.
3. Amiks Dzhems V. Fizika neftjanogo plasta: Per. s angl. [Petroleum reservoir engineering. Physical properties]. Dzh. Amiks, D. Bass, R. Uajting. Moscow, 1962, 572 p.
4. Mishhenko I. T. Skvazhnaja dobycha nefti: Uchebnoe posobie dlja vuzov [Downhole oil production: a textbook for universities]. Moscow, 2003, 816 p.
5. Shotidi K.H., Krasenkov S.V. Metody i sposoby bor’by s parafinovymi otlozhenijami. Perspektivy razvitija. Ctroitel’stvo neftjanyh i gazovyh skvazhin na sushe i na more [Construction of oil and gas wells on land and sea], 2019, no. 11, p. 56-60 (in Russian).

Refined estimation of vibration of pipelines transporting oil and gas

Authors: Alexey P. EVDOKIMOV graduated from Moscow State Open University. He is Doctor of Technical Sciences, Professor of the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of nonlinear mechanics of deformation and destruction of viscoelastic structural elements. He is author of more than 60 scientific publications. E-mail:

Abstract: The article provides a conclusion of theoretical dependencies of the updated estimation of the vibration state of oil and gas pipelines. They are based on the turns of pipelines during vibration. When deriving the equations, such an important factor as “chain forces” is taken into account. The natural frequencies of vibration motion are estimated taking into account the inertia of the rotation of the cross sections of the pipe and the condition for the occurrence of resonance

Index UDK: 621.825

Keywords: vibration, pipeline, flow pressure, radial stresses, axial deformation

1. Shary N.V., Semishkin V.P., Pimenov V.A., Dragunov Yu.G. Strength of the main equipment and pipelines of VVER reactor installations. Moscow: Izdat, 2004, 496 p.
2. Panovko Ya.G. Free and forced vibrations of rods and rod systems. Reference book “Strength. Stability. Vibrations”, vol. 3. Moscow: Mashinostroenie, 1968, 568 p.
3. Targ S.M. Short course of theoretical mechanics. Moscow: Nauka, 1970, 478 p.
4. Kittel C.H., Knight W., Ruderman M. Mechanics. Moscow: Nauka, 1971, 480 p.
5. Feodosiev V.I. Resistance of materials. Moscow: Nauka, 1970, 544 p.
6. Shcheglov B.A., Makhutov N.A., Shary N.V. Vibration of pipes with flows. Problems of mechanical engineering and machine reliability, 2009, no. 4, p. 105-109.

On the mechanism of heat and mass transfer of moisture under thermal influence on frozen soils during the construction and operation of oil and gas pipelines

Authors: Boris L. ZHITOMIRSKIY graduated from Kamenetz-Podolsk Higher Military Enginee- ring Command School named after Marshal of Engineering Troops Kharchenko and Kuibyshev Military Engineering Order of Lenin Red Banner Academy. He is Candidate of Technical Sciences, General Director of AO “Gazprom Orgenergogaz”. He is Professor at the Department of Termodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 50 scientific papers in the field of power engineering, diagnostics, energy saving and gas transport.

Abstract: Issues of construction, ensuring reliable and safe operation of oil and gas pipelines at the facilities of the energy complex of the Russian Federation are a priority. From this point of view, the results of research on the working processes of soil development with thermomechanical equipment of a new generation are considered. Based on the results of theoretical and experimental studies, the mechanism of heat and mass transfer of a vapor-gas mixture from a coolant in a pit in frozen soils is justified. Recommendations are given for methodological support of working processes and technology of soil development with thermomechanical equipment during construction and operation of oil and gas pipelines in frozen ground conditions

Index UDK: 620.19

Keywords: gas and oil pipelines, gas turbine engine, pit, heat carrier


1. Teoriya i praktika ispytanij na prochnost’ i vvoda v dejstvie gazoprovodov. V.G. Dubinskij, I.F. Egorov, A.S. Lopatin i dr. M.: MAKS Press, 2015, 576 p.
2. Dmitriev A.P., Goncharov S.A. Termodinamicheskie processy v gornyh porodah. M.: Nedra, 1990, 360 p.
3. Zhitomirskij B.L., Dubinskij V.G., Lopatin A.S. Issledovanie rezhimov techeniya strui voz-duha ot burovogo instrumenta pri termomekhanicheskom sposobe razrabotki shurfov na gazoprovodah. Trudy RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2019, no. 4 (297), p. 99-111.
4. Zhitomirskij B.L. Sposob regulirovaniya processa termomekhanicheskogo vozdejstviya na grunt pri stroitel’stve i ekspluatacii truboprovodov. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2020, no. 3 (117), p. 70-72.
5. Zhitomirskij B.L. Issledovanie vliyaniya svojstv grunta na proizvoditel’nost’ burovogo instrumenta dlya primeneniya pri stroitel’stve i ekspluatacii neftegazoprovodov. Trudy RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2020, no. 1 (298), p. 74-78.
6. Zhitomirskij B.L. Ob optimizacii energeticheskogo balansa termomekhanicheskogo burovogo instrumenta pri shurfovom diagnostirovanii truboprovodov. Neftegaz, 2020, no. 1-2, p. 98-102.
7. Teplo- i massoobmen v kapillyarnoporistyh telah. Sbornik statej Akad. nauk BSSR. Instityt teplo- i massoobmena, pod red. akad. A.V. Lykova i prof. B.M. Smol’skogo. Minsk: Nauka i tekhnika, 1965, 154 p.

Automation of design and technological preparation of gear production by copying method
Technical sciences

Authors: Alexander N. SOBOLEV graduated from Moscow State University of Technology “STANKIN” in 2002 in the direction of the magistracy “Technology, Equipment and Automation of Engineering Industries”. He is Candidate of Technical Sciences, Assistant Professor of the Sub-department of Machines of MGTU “STANKIN”. He is expert in the theory of mechanisms and CAD. He is author and co-author of more than 120 scientific and educational works. E-mail:
Alexey Ya. NEKRASOV graduated from Moscow State University of Technology “STANKIN” in 1994 by specialty “Machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in engineering. He is author and co-author of more than 120 scientific and educational works.
Michail O. ARBUZOV graduated from Moscow machine tool institute in 1964 by specialty “Mechanical engineering technology, machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in the field of designing and calculating machine parts. He is author and co-author of more than 60 scientific and educational works. E-mail:
Victor G. PIROZHKOV graduated from the Krasnoyarsk Polytechnic institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 70 scientific and educational works.

Abstract: The article discusses the problems of automation of technological preparation for the production of spur involute gears using the copy method. The performance capabilities of the software module developed by the authors are described. These allow to reduce the labour effort of design, technological and economic calculations. The software application has been tested on milling and EDM equipment, with the help of contouring, gears with an exact involute profile have been obtained

Index UDK: 621.833.1

Keywords: copying method, EDM, gear, design automation

1. Gushchin V.G., Baltadzhi S.A., Sobolev A.N., Brovkina Yu.I. Proyektirovaniye mekhanizmov i mashin [Design of mechanisms and machines]. Tutorial. Stary Oskol, 2019, 488 p.
2. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. To the question of the shaping of the profile of cylindrical gears during electrical discharge cutting. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2018, no. 4, p. 118-131 (in Russian).
3. Sobolev A.N., Nekrasov A.Ya., Andreev V.N., Kaliteevsky D.A. Economic aspects and features of EDM of gears. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Techno-logy “Stankin”], 2018, no. 3, p. 141-146 (in Russian).
4. Sobolev A.N., Kosov M.G. Automation of kinematic and dynamic analysis of technologi- cal machines. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2010, no. 2, p. 32–36 (in Russian).
5. Egorov O.D., Bujnov M.А., Prokhorenko L.S. Structural analysis of mechanisms using graphs. Tekhnologiya mashinostroeniya [Engineering Technology], 2017, no. 7, p. 33-36 (in Russian).
6. Sobolev А.N., Nekrasov А.Ya., Yаgol’nitser O.V., Butrimova E.V. An experimental model for assessing the technical and environmental indicators of machine tools. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2016, no. 1, p. 33-37 (in Russian).
7. Pirogkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Computer-aided design and modeling in mechanical engineering: orthogonal bevel gears. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 2, p. 95-106 (in Russian).
8. Pirozhkov V.G., Sobolev А.N., Nekrasov А.Ya., Аrbuzov M.O. Gear mechanisms of intermittent intermittent motion: designs, calculation methods, modeling. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 4, p. 156-166 (in Russian).
9. Nekrasov А.Ya., Аrbuzov M.O., Pirozhkov V.G. On a formalized method for determining the additional loads caused by individual errors in the steps of links in mechanical devices with multi-pair contact of elements. Neft’ gaz i biznes [Oil, Gas and Business], 2011, no. 3, p. 62-67 (in Russian).
10. Kazakov A.A., Arbuzov M.O., Pirogkov V.G., Saldadze A.D. Influence of part shape errors in equipment accuracy calculations. Neft’ gaz i biznes [Oil, Gas and Business], 2012, no. 1-2, p. 98-101 (in Russian).
11. Sobolev A.N., Nekrasov A.Ya. Improving the design technique of the pin chain gearing based on new software for calculating and modeling. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2015, no. 3, p. 34-38 (in Russian).
12. Sobolev A.N., Kosov M.G., Nekrasov A.Ya. Modeling of structures of hull parts using calculated macrocells. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2014, no. 3, p. 98-101 (in Russian).
13. Pronin А.I., Myl’nikov V.V., Val’ko D.А., Kondrashkin O.B. Development and research of part design using CAD/CAE systems. Remont. Vosstanovlenie. Modernizatsiya [Repairs. Recovery. Modernization], 2018, no. 6, p. 13-16 (in Russian).
14. Kosov M.G., Gurevich YU.E., Kapitanov А.V. Load distribution on rolling bodies of wave transmission generators. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2018, no. 1, p. 36-44 (in Russian).
15. Chekanin V.A., Chekanin A.V. Data structure for the problem of three-dimensional orthogonal packing of objects. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2015, no. 1, p. 112-116 (in Russian).
16. Sobolev А.N., Nekrasov А.YA., Аrbuzov M.O. Effective methods of training future engineering and scientific personnel at the machine tool department of MGTU “Stankin”. Tekhni- cheskoe tvorchestvo molodyozhi [Technical creativity of youth], 2016, no. 1, p. 21-24 (in Russian).
17. Pirozhkov V.G., Arbuzov M.O., Sobolev A.N., Nekrasov A.Ya. Progressive ways of mounting parts on the shaft. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2020, no. 2, p. 99–110 (in Russian).

Authors: Alexander V. MURADOV graduated from Azizbekov Azerbaijan State Institute of Oil and Chemistry in 1973. He is Doctor of Technical Sciences, Professor of the Dept. of Metallurgy and Non-metallic materials of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of corrosion of the equipment of oil and gas complex. He is the author of more than 100 scientific works. E-mail:
ALEXEY I. LAVRENCHUK graduated from the Ulyanovsk branch of the Military Academy of Logistics And Transport in 2002 and the Military Academy of Logistics and Transport in 2009. He is Candidate of Technical Sciences, Head of the Military Training Center of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 14 scientific publications.
Mikhail Yu. KIL’YANOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1984. He is Candidate of Chemical Sciences, senior researcher at the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of catalytic processes of oil refining an author of over 80 scientific papers. E-mail:
Sergey I. KOLESNIKOV graduated from Gubkin Russian State University of Oil and Gas in 1981. Ph.D. in Chemical Sciences, head of the laboratory of the Department of Phy- sical and Colloidal Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in catalysis, oil and gas processing and thermodynamics of phase transitions. He is the author of more than 25 inventions and 135 scientific publications. E-mail:
Sergey N. BABAEV graduated from Moscow State University in 1978. He is Candidate of Chemical Sciences, Assistant Professor of the Dept. of Physical and Colloidal Chemistry of the Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in physical chemistry. He is the author of more than 30 scientific publications. E-mail:

Abstract: The article presents the results of studies on catalytic pyrolysis of the gasoline fraction using the mineral sillimanite as a high-temperature aluminum catalyst to effectively increase the output of olefins. The process of pyrolysis on such a catalyst is based on the high temperature resistance of sillimanite (used for the production of fire retardants in the steel industry and in the production of cera-mics) and the presence of more than 50 % of active aluminium atoms concen-
trated in tetrahedrons. Based on the results of practical studies for the new high-temperature sillimanite catalyst, the equation of kinetics of the pyrolysis process of the gasoline fraction has been developed, and constants on the theory of transitional state have been determined. Studies at the pyrolysis laboratory have shown that sillimanite catalyst is a significant activator of the process

Index UDK: 661.715.4

Keywords: сatalysis, pyrolysis, gasoline, olefins, sillimanite, aluminosicate, kinetics

1. Aliyev R.R. Catalysts and Oil Refining Processes. M.: JJJ “VNIINP”, 2010, 389 p.
2. Kolesnikov I.M. Cataliz and Catalyst Production. M.: Technique, TUM GROUP, 2004, 400 p.
3. Kolesnikov I.M. Cataliz in the oil and gas industry. Oil and gas, 2013, 484 p.
4. Le Page J.-F. et al. Applied heterogeneous catalysis. Paris. Ed. Technip, 1987, 515 p.
5. Bannow P.G. Oil Refining Processes, ch. 2. M.: CNIITEneftehim, 2001, 415 p.
6. Justino G.T., Vale C.S.F., da Silva V.A.P., Secchi A.R. Modeling Sterne Hydrogenation Kinetics Using Palladium Catalysts. Brazilian Journal of Chemical Engineering, vol. 33, no. 03, p. 637-647.
7. Kesia K.V. Castro, Anelise I. Figueiredo, Amanda D. Gondin, Ana C.F. Coriolano, Ana P.M. Alves. Pyrolysis of atmospheric residue of petroleum (ATR) using AKSBA-15 mesoporous material by TG and Py-GC|MS. J. Them.Calorin, 2014, no. 4, р. 678-684.
8. Xianghai Meng, Chunming Xu, Li Li, Jinsen Gao. Cracring erformence of Gasoline and Diesel Fraction from Catalytic Pyrolysis of Heavy Gas Oil Derived from Canadian Syntetic Crude Oil. Am.Chem.Soc., 2011, vol. 25, p. 3382-3388.
9. Xianghai Meng, Chunming Xu, Li Li, Jinsen Gao. Cracring Performence and Feed Characte- rization Study of Catalytic Pyrolysis for Light Olefin Production. Аm. Chem.Soc., 2011, vol. 25, p. 1357 -1363.
10. Liu Yibin, Chen Xiaobo, Zhao Hui, Yang Chaohe. Establishment of Kinetic Model for Catalytic Pyrolysis of Daqing Atmospheric Residue. Chinese J. Chem.Eng., 2009, vol. 17 (1), p. 78-82.
11. Li Li, Gang Wang, Xianghai Meng, Chunming Xu, Jinsen Gao. Catalytic Pyroilysis of Gas Oil Derived from Canadian Oil Sands Bitumen. Ind.Eng.Chem.Res., 2008, vol. 47, p. 710-716.
12. Xianghai Meng, Chunming Xu, Jinsen Gao. Production of Light Olefinse by Catalytic Pyrolysis of Heavy Oil. Petroleum Science and Technology, 2006, vol. 24, p. 413-422.

Gel-generation of systems based on aluminum polyoxychloride under various physicochemical conditions
Chemical sciences

Authors: Irina V. NIKITINA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2019. She is Master program student of the Specialized Department of Technologies for Improving Oil Recovery for Reservoirs with Complicated Conditions of Gubkin Russian State University of Oil and Gas (National Research University).
Kira A. POTESHKINA graduated from Gubkin Russian State University of Oil and Gas in 2012. She is Candidate of Technical Sciences, assistant professor of the Department of Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in oilfield chemistry and author of 25 scientific publications.
Ljubov’ A. MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry 1975. She is Doctor of Technical Sciences, Professor at the Department of Chemical Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is Head of Laboratory of Scientific and Educational Center for Field Chemistry. She is specialist in the field of oilfield chemistry. She is author of more than 230 scientific publications. E-mail:
Mihail A. SILIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1978. He is Doctor of Chemical Sciences, Head at the Department of Chemical Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of chemicals and technologies for oil and gas production. He is author of more than 250 scientific publications. E-mail:
Vladimir V. MAKIENKO graduated from the Ufa State Petroleum Technical University in 1996. Postgraduate student of the Department of chemical technology for the oil and gas industry of Gubkin Russian State University of Oil and Gas (National Research University). Head of the Lukoil-Western Siberia department. Specialist in the field of oilfield chemistry. The author of more than 15 scientific publications. E-mail:

Abstract: Тhe influence of terrigenous rocks mineralogical composition and water chemical composition on gel-generation time of systems based on aluminum polyoxychlorides was studied. It was shown that with an increase in rocks clay and carbonate content, the gel-generation time decreases linearly for the VIS-1 system and exponentially for the SiXell system. It was established that with an increase in water mineralization, the time of sedimentation decreases, showing a larger decrease for sodium hydrogen carbonate waters due to their greater alkalinity. It was determined that these processes are associated with a change in the pH of solutions of gel-generation systems in the presence of alkaline and alkaline-earth metal ions contained in water and rock

Index UDK: 622.276.57/58

Keywords: enhanced oil recovery, gel-generated systems based on aluminum polyoxychlorides, gel-generation time, rock`s mineralogical composition, mineralization of edge and bottom water

1. Koncepcija gosudarstvennogo upravlenija racional’nym ispol’zovaniem zapasov nefti. A.A. Bokserman, V.K. Gomzikov, A.Ja. Fursov, Je.M. Halimov, I.S. Dzhafarov. M.: JSC “Zarubezhneft’ ”, 2005, 118 p.
2. Muslimov R.H. Sovremennye metody povyshenija izvlechenija. Proektirovanie, optimizacija i ocenka jeffektivnosti. Kazan’: Akademija nauk RT, 2005, 300 p.
3. Poddubnyj Ju.A., Zhdanov S.A. O klassifikacii metodov uvelichenija nefteotdachi plastov (v porjadke obsuzhdenija). Neftjanoe hozjajstvo, 2003, no. 4, p. 19-25.
4. Poteshkina K.A. Razrabotka i issledovanie osadkogeleobrazujushhego sostava dlja povyshenija nefteotdachi plastov. Kand. Diss. Moskva, 2016, 76 p. (in Russian).
5. Sladovskaja O.Ju., Bashkirceva N.Ju., Kurjashov D.A., Lahova A.I., Mingazov R.R., Ismagilov I.F., Vagapov B.R. Primenenie kolloidnyh sistem dlja uvelichenija nefteotdachi plastov. Vestnik Kazanskogo tehnologicheskogo universiteta, 2010, no. 10, p. 585-591.
6. Hisamov R.S., Gazizov A.A., Gazizov A.Sh. Uvelichenie ohvata produktivnyh plastov vozdejstviem: uchebnoe posobie. M.: JSC “VNIIOJENG”, 2003, 568 p.
7. Trofimov A.S., Ahmetshin M.A., Novgorodov V.V., Evremov I.F., Jeler A.A., Altunina L.K., Kuvshinov V.A. Sostav dlja povyshenija nefteotdachi. Patent SSSR no.1654554, 1989.
8. Altunina L.K., Kuvshinov V.A., Stas’eva L.A. Sostav dlja povyshenija nefteotdachi plastov. Patent RF no. 2066743, 1993.
9. Shuvalov A.V., Nazmiev I.M., Emaletdinova L.D., Kamaletdinova R.M., Sadykov R.R., Kargapol’ceva T.A. Sostav dlja regulirovanija pronicaemosti plasta. Patent RF no. 2283854, 2006. Bjul. no. 26.
10. Gorlovskij D.M., Al’tshuler L.N., Kucherjavyj V.I. Tehnologija karbamida. Leningrad: “Himija”, 1981, 320 p..
11. Korchuganova O.M., Abuzarova K.R., Zarajs’ka O.S., Kursa N.Є. Doslidzhennja vplivu рН na kinetiku gidrolizu karbamidu. Naukovi visti NTUU “KPI”, 2012, no. 3, p. 50-56 (in Rus- sian).
12. Silin M.A. Puti razvitija tehnologij fiziko-himicheskogo vozdejstvija na plasty mestorozhdenij Zapadnoj Sibiri s cel’ju povyshenija ih nefteotdachi. M.A. Silin, D.Ju. Eliseev, A.N. Kulikov. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2012, no. 4 (269), p. 40-47.
13. Mel’nikov B.P. Proizvodstvo mocheviny. M.: Goshimizdat, 1965, 167 p.
14. Altunina L.K., Kuvshinov V.A. Fiziko-himicheskie metody uvelichenija nefteotdachi plastov neftjanyh mestorozhdenij. Uspehi v himii, 2007, no. 10, p. 1034-1052.
15. Nikolaev N.M., Kokorev V.I., Karpov V.B., Darishhev V.I., Harlanov S.A., Filenko D.G., Silin M.A., Magadova L.A., Poteshkina K.A., Magadov V.R., Gubanov V.B. Sostav mnogofunkcional’nogo reagenta dlja fiziko-himicheskih metodov uvelichenija nefteotdachi (MUN). Patent RF no. 2529975, 2014. Bjul. no. 28.
16. Murinov K.Ju., Gvozdik S.P., Savel’eva E.N., Shishlova L.M. Vlijanie litologo-mineralogicheskogo sostava na petrofizicheskie svojstva terrigennyh porod nizhnego karbona Hasanovskoj ploshhadi. “Territorija neftegaz”, 2015, no. 12, p. 70-75.
17. Kachinskas I.V. Vlijanie litologo-mineralogicheskogo sostava i postsedimentacionnyh processov na fil’tracionno-emkostnye svojstva terrigennyh kollektorov (na primere mestorozhdenij nefti i gaza Vostochnoj i Zapadnoj Sibiri): Kand. Diss, Tjumen’, 2013, 16 p.
18. Kurushina Ju.V., Valeeva S.E., Fahrutdinov Je.I. Osobennosti litologo-mineralogicheskogo sostava frolovskoj svity (na primere Severo-Krutinskogo mestorozhdenija nefti). “Jespozicija neft’ gaz”, 2017, no. 4 (57), p. 19-22.

Requirements for continuous monitoring systems of oil-contaminated areas
Chemical sciences

Irina S. IVASCHENKO graduated from Samara State Technical University in 2018. She is Graduate student of the Department of Chemical Engineering and Industrial Ecology of Samara State Technical University. She is Engineer of third category at Technological Department of AO “Samaraneftekhimproekt”. She is author and co-author of 2 scientific publications.
Vasily V. YERMAKOV graduated from Samara State Technical University in 2006. He is Candidate of Technical Sciences, Associate Professor of the Dept. of Chemical Engineering and Industrial Ecology. He is Head of the Laboratory of the NCPE FSBOU VO of the Samara State Technical University. He has authored and co-authored 68 scientific publications. E-mail:

Abstract: As a result of the development of oil production and refining industries, the risk of emergency oil spills increases. The complex chemical composition of oil and petroleum products leads to a number of environmental problems related to changes in the biological and microbiological properties of the soil cover, as well as to extensive damage to plants and animals. The process of natural rehabilitation of oil-contaminated soils is long and requires new technologies for continuous monitoring. The analysis of the collected data allows to correct and predict the progress of restoration of disturbed territories under the influence of many factors using the construction of a multidimensional trajectory. It is first proposed to use process-analytical technology (PAT) to control the restoration of contaminated areas

Index UDK: 550.8.05

Keywords: continuous technological control, process-analytical territory, multidimensional model, assimilation, chemometrics

1. Bogomolov A.Yu. Optical multisensor systems: development and application in analysis. Abstract diss. doc. Chem. science. Moscow, 2019, 41 p. (in Russian).
2. Glazovskaya M.A., Pikovsky Yu.I., Korontsevich T.I. Integrated zoning of the territory of the USSR by types of possible changes in the natural environment during oil production. Landscape-geochemical zoning and environmental protection. M., 1983, issue 120, p. 84-108 (in Russian).
3. Chijov B.E., Zaharov A.I., Garkunov G.A. Degradation and rebellion dynamics of forest phytocenoses after oil pollution. Forests and forestry of Western Siberia. Tyumen, 1998, issue 6, p. 160-172 (in Russian).
4. Nazarov A.V. Impact of oil soil pollution on plants. Journal of Perm State University. Biology, 2007, issue 5 (10), p. 134-141 (in Russian).
5. GOST 27593-88 of the Soil. Terms and definitions (in Russian).
6. Golovanov A.I., Zymin F.M., Smetanine V.I. Recultivation of disturbed lands. M.: Kolos, 2009, 325 p. (in Russian).
7. Drebuschak T.N. Introduction to Chemometric. Tutorial. Novosibirsk, 2013, p. 7-9 (in Russian).
8. Available at: html (date of the address: 21.05.2020).
9. Available at: (date of the address: 01.11.2019).